

Gas Station Network (GSN), Paymaster
Contracts, + Forwarder Contract
Security Audit Report
Ethereum Foundation
Updated Final Report Version: 27 December 2020

Table of Contents

Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

Review Scope

Code Quality + Documentation

System Design

Specific Issues

Issue A: Relay URL Filter Does Not Remove Duplicates

Issue B: RelayClient Does Not Timeout Relay Request

Issue C: Malicious Paymaster

Issue D: Relay Server Griefing (Known Issue)

Issue E: Relay Penalizer Incentive Misalignment

Issue F: Attacker May Request Block Gas Limit Worth of Gas

Issue G: RelayHub Makes Unguarded Call to Untrusted Contract

Suggestions

Suggestion 1: Improve Documentation

Suggestion 2: Consider Implementing an Approve / Confirm Owner Transfer

Suggestion 3: Complete Paymaster Gas Calculation

Recommendations

About Least Authority

Our Methodology

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 1
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
The Ethereum Gas Station Network has requested that Least Authority perform a security audit of the Gas
States Network (GSN), the Paymaster Contracts, and the GSN Forwarder Contract, supported by the
Ethereum Foundation

● GSN: GSN is a decentralized system that aims to improve decentralized applications usability
without sacrificing security. GSN abstracts away gas to minimize onboarding and UX friction for
decentralized applications. With GSN, gasless clients can interact with Ethereum contracts
without users needing ETH for transaction fees.

● Paymaster: In order to cover their expenses, the transaction costs will be charged from a balance
of a special contract, called Paymaster.

● Forwarder: The GSN Forwarding Contract is the generic meta transaction forwarding contract
proposed as an ERC 2770. The contract verifies a signature and appends msg.sender to the last
20 bytes of msg.data, allowing recipient contracts that trust the forwarder to accept native meta
transactions. The intended use of the forwarder contract is to be a neutral singleton on-chain that
any contract can leverage to support meta transactions.

Project Dates
● July 30 - August 19: Code review (Completed)
● August 21: Delivery of Initial Audit Report (Completed)
● December 7 - 9: Verification (Completed)
● December 11: Delivery of Final Audit Report (Completed)
● December 27: Delivery of Updated Final Audit Report (Completed)

Review Team
● Nathan Ginnever, Security Researcher and Engineer
● Dylan Lott, Security Researcher and Engineer
● Dominc Tarr, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the GSN, the Paymaster Contracts, and
the GSN Forwarder Contract followed by issue reporting, along with mitigation and remediation
instructions outlined in this report.

The following code repositories are considered in-scope for the review:
● GSN: https://github.com/opengsn/gsn
● Paymaster Contracts: https://github.com/opengsn/gsn-paymasters
● GSN Forwarder Implementation: https://github.com/opengsn/forwarder

Specifically, we examined the Git revisions for our initial review:

GSN: 3bc59af87bed764cedb828dedbb3a18188b21b0a

GSN-Paymasters: a7a28e93bac235fde3c177df3b4e5753a7004afb

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 2
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/opengsn/gsn
https://github.com/opengsn/gsn-paymasters
https://github.com/opengsn/forwarder

Forwarder Contracts: bf3447b2e54c407a6e02e0bd2af858fe71e13711

For the verification, we examined the Git revision:

 GSN: d0deb33e851d069c4c33cbff5183fc1a7ff8440c

GSN-Paymasters: dd6d6c038cecc067f9141c5927b4ced2d302a4f4

Forwarder Contracts: d0deb33e851d069c4c33cbff5183fc1a7ff8440c

All file references in this document use Unix-style paths relative to the project’s root directory.

Supporting Documentation
The following documentation was available to the review team:

● README: https://github.com/opengsn/gsn/blob/master/README.md
● GSN Documentation: https://docs.opengsn.org/learn/index.html
● Paymaster Documentation: https://docs.opengsn.org/contracts/#paymaster
● Kovan Testnet:

https://dashboard.tenderly.co/contract/kovan/0x77777e800704fb61b0c10aa7b93985f835ec23f
a

● ERC Drafts
○ EIP 1613 (GSN v2 is isomorphic in both form of function to the GSN v1):

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1613.md
○ EIP 2770 Forwarder Singleton:

https://github.com/forshtat/EIPs/blob/forwarder_eip/EIPS/eip-2770.md
○ EIP 2771 (WIP) - Secure Native Meta Transaction Recipient:

https://docs.google.com/document/d/1UXNctr5TPKRAGP1wpMQhX69AgCM5jve2TFSrD
fFaCo8/edit

● Internal GSNv2 Documents
○ Security Model:

https://www.notion.so/GSN-v2-security-model-4115f7e4d067413d9d18a0a3f6086c1a
○ GSN Replay DDoS Attack and Mitigation:

https://www.notion.so/GSN-Replay-DDoS-attack-and-mitigation-a99ffea3cb8e49c986d76
124882072d6

○ Trust Model:
https://docs.google.com/document/d/109abcg0szQRKNzzwIZQmHHyowlCYhvr30b3F3F
cIt5o/edit

○ Relay Flow:
https://docs.google.com/document/d/1Du6l8Yx7GbIK-vec7ypN6kb-cCHcFzJLNYYtXhk9
w3w/edit#heading=h.9kfxcqxwsjc0

○ Beta Paymaster Model:
https://docs.google.com/document/d/1Feec_OgAXEqanDRsKQ-NtBz1kpcWskFhD7X-b5
GhcM4/edit

○ Paymaster API:
https://docs.google.com/document/d/1Up6PqrEkdMB9n7VAJO03ozZS13L-OtagZjtZVd7
tgY0/edit

○ Relay Server Auto-Upgradability Model:
https://docs.google.com/document/d/1AANPUBP5JgSwYDywYvTSrCSWM5oguKCj1xUT
Zk8AfkI/edit#heading=h.z5aqgmfbykl9

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 3
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/opengsn/gsn/blob/master/README.md
https://docs.opengsn.org/learn/index.html
https://docs.opengsn.org/contracts/#paymaster
https://dashboard.tenderly.co/contract/kovan/0x77777e800704fb61b0c10aa7b93985f835ec23fa
https://dashboard.tenderly.co/contract/kovan/0x77777e800704fb61b0c10aa7b93985f835ec23fa
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1613.md
https://github.com/forshtat/EIPs/blob/forwarder_eip/EIPS/eip-2770.md
https://docs.google.com/document/d/1UXNctr5TPKRAGP1wpMQhX69AgCM5jve2TFSrDfFaCo8/edit
https://docs.google.com/document/d/1UXNctr5TPKRAGP1wpMQhX69AgCM5jve2TFSrDfFaCo8/edit
https://www.notion.so/GSN-v2-security-model-4115f7e4d067413d9d18a0a3f6086c1a
https://www.notion.so/GSN-Replay-DDoS-attack-and-mitigation-a99ffea3cb8e49c986d76124882072d6
https://www.notion.so/GSN-Replay-DDoS-attack-and-mitigation-a99ffea3cb8e49c986d76124882072d6
https://docs.google.com/document/d/109abcg0szQRKNzzwIZQmHHyowlCYhvr30b3F3FcIt5o/edit
https://docs.google.com/document/d/109abcg0szQRKNzzwIZQmHHyowlCYhvr30b3F3FcIt5o/edit
https://docs.google.com/document/d/1Du6l8Yx7GbIK-vec7ypN6kb-cCHcFzJLNYYtXhk9w3w/edit#heading=h.9kfxcqxwsjc0
https://docs.google.com/document/d/1Du6l8Yx7GbIK-vec7ypN6kb-cCHcFzJLNYYtXhk9w3w/edit#heading=h.9kfxcqxwsjc0
https://docs.google.com/document/d/1Feec_OgAXEqanDRsKQ-NtBz1kpcWskFhD7X-b5GhcM4/edit
https://docs.google.com/document/d/1Feec_OgAXEqanDRsKQ-NtBz1kpcWskFhD7X-b5GhcM4/edit
https://docs.google.com/document/d/1Up6PqrEkdMB9n7VAJO03ozZS13L-OtagZjtZVd7tgY0/edit
https://docs.google.com/document/d/1Up6PqrEkdMB9n7VAJO03ozZS13L-OtagZjtZVd7tgY0/edit
https://docs.google.com/document/d/1AANPUBP5JgSwYDywYvTSrCSWM5oguKCj1xUTZk8AfkI/edit#heading=h.z5aqgmfbykl9
https://docs.google.com/document/d/1AANPUBP5JgSwYDywYvTSrCSWM5oguKCj1xUTZk8AfkI/edit#heading=h.z5aqgmfbykl9

Areas of Concern
Our investigation focused on the following areas:

● Protocol:
○ Integrity of forwarder recipients: sender and nonce cannot be spoofed for any recipient

that trusts the forwarder;
○ Griefing mitigations mechanisms are sound in that the asymmetries are tilted to the

benefit of the defense;
○ Availability guarantees provided by the mechanism design of the protocol have not

regressed significantly since GSN v1 / EIP 1613 (GSN v2 is isomorphic in both form of
function to the GSN v1);

● All Contracts:
○ Integrity of deposits by GSN participants: all third party deposits by relay servers and

Paymasters can not be stolen or frozen;
○ Assessing the security of the Paymaster templates;
○ Correctness of the implementation;
○ Adversarial actions and other attacks on the network;
○ Potential misuse and gaming of the smart contracts;
○ Attacks that impact funds, such as the draining or the manipulation of funds;
○ Mismanagement of funds via transactions;
○ Economic incentives: ensure token economics (monetary incentives to punish bad

behavior and reward good behavior) are included and functional;
○ DoS/security exploits that would impact the contracts intended use or disrupt the

execution of the contract;
○ Vulnerabilities in the smart contracts code;
○ Protection against malicious attacks and other ways to exploit contracts;
○ Inappropriate permissions and excess authority;
○ Data privacy, data leaking, and information integrity; and

● Anything else as identified during the initial analysis phase.

Findings
General Comments
The GSN team was an invaluable resource throughout the audit and was readily available to answer
questions and provide further context on specific areas of concern. It is clear from the project
documentation, code, and our interactions with the GSN team that security has been strongly considered
and of the utmost priority throughout the construction. We commend the GSN team for their diligence and
efforts.

Despite this clear effort towards security, there are a few suggestions and issues that were identified
during the audit, as noted below.

Review Scope
During our review of the Gas Station Network, our team closely evaluated the core GSN contracts,
including the RelayHub, StakeManager, Penalizer and the Paymaster base class, in addition to the
Paymaster and Forwarder contracts. The scope was comprehensive, covering most components of the
system, and included a review of the GSN protocol. However, the design of the relay server
auto-upgradeability mechanism was considered out of scope for the review.

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 4
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/opengsn/gsn_v1
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1613.md

Code Quality + Documentation
Our team found the code to be clean, well organized, and of high quality, in that it adhered closely to
development best practices. The GSN system relies heavily on interfaces and have created a set of
interfaces for creating a meta transaction’s setup for numerous use cases. Thus, they have created a
framework for meta transactions that can be extended and inherited from, in order to include a large
variety of trust models in a manner that can be reasonably secure for all participants.

In addition, we found the Solidity code to be considerably advanced in most areas of the codebase,
demonstrating the GSN team’s deep understanding of Solidity and the Ethereum Virtual Machine (EVM).
The GSN team employs advanced usage of deep language features such as the recently experimental ABI
encoder V2 to support array data, which has only been ready for deployment in production since Solidity
compiler v0.6.0. Usage of modifiers, inheritance, and gas saving techniques, such as comparing hashed
data rather than the data itself, demonstrates a comprehensive understanding of Solidity and we
commended the GSN team for employing relatively new and experimental techniques carefully such that
the security continues to be a primary concern.

The codebase includes high-level comments in several areas, particularly describing the design rationale
for more complicated functions. We found the interface contracts to be particularly well commented and
follow style guides, which was useful in determining how the various components may potentially
interact.

There are other areas in the code, however, that would benefit from additional comments. While there are
comments providing a description of functionality, they do not adhere to the Solidity standard style
guidelines which would include documenting parameters. Detailed context on how a single component
works within the rest of the system would provide further guidance to users and reviewers of the code.
For example, the utilities library implementing EIP 712 contains only one commented function. As a result,
we suggest that comments be integrated into the codebase at large, particularly in areas of increased
complexity (Suggestion 1).

The codebase also includes a considerable test suite that includes happy path tests, including regression
tests and tests for specific malicious actions, in an attempt to prevent malicious activity, which
exemplifies a strong focus on security and safety by the GSN team.

The existing project documentation is comprehensive with a strong emphasis on security. The
documentation proves to be useful in that it covers certain potential vulnerabilities, with a heavy focus on
different attack vectors and mitigations. However, the documentation is not yet published and we suggest
compiling the informal documentation provided to our team on attacks into the formal GSN
documentation. In addition, documentation around the expected use cases would prove to be helpful.
Since the GSN codebase largely comprises a framework for handling meta transactions, we recommend
having more documentation available describing the expected use cases and how the system handles
requests from beginning to end (Suggestion 1).

System & Mechanism Design
GSN alters the Ethereum blockchain protocol to allow meta transactions, which shifts the trust model of
who pays for the computational resources of a blockchain network. Meta transactions are a desirable
feature for many reasons, as they increase usability and lower barriers to entry into blockchain networks.
However, allowing for a separation of payment concerns introduces a third party to the transaction. This
creates a fundamental trust problem that the GSN does a notable job of mitigating. Users must trust that
the relayers will not deny service by broadcasting the same nonce and a relayer trusts that a Paymaster
will reimburse the transaction, while the Paymaster needs to trust that users and relayers will not expend
too many resources and deplete the funds in the Paymaster contracts.

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 5
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://solidity.readthedocs.io/en/v0.5.3/style-guide.html
https://solidity.readthedocs.io/en/v0.5.3/style-guide.html
https://docs.opengsn.org/
https://docs.opengsn.org/

All of these concerns have been addressed by some mechanism in the GSN network, including stake for
relayers to be penalized when incorrectly formatting transactions, forwarders ability to be trusted by the
application such that any application is not exposed to the risk of the open GSN relay network, and the
limits placed on Paymasters for what they will pay out to prevent malicious usage of gas funds. The GSN
team brought to our attention notes on attacks relating to these trust problems, which we examined
carefully and have raised edge case concerns in Issue D and Issue E.

Our team found that most of the issues in the system design exist in the trust relationship between
Paymasters and relay servers (Issue C). The incentives between this part of the system must be
examined and weighed carefully and any changes to these components should be carefully considered,
internally tested, and followed up by a third party review (Issue E).

The penalty system also requires a careful review of how its incentives line up with Paymasters and
relays, since it is meant as a check against poorly behaving relays. Penalties must be administered
carefully to keep incentives aligned between the other components in the system.

Specific Issues
We list the issues we found in the code in the order we reported them. In most cases, remediation of an
issue is preferable, but mitigation is suggested as another option for cases where a trade-off could be
required.

Issue A: Relay URL Filter Does Not Remove Duplicates

Location

https://github.com/LeastAuthority/gsn/blob/3bc59af87bed764cedb828dedbb3a18188b21b0a/src/relay
client/RelaySelectionManager.ts#L97

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 6
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

ISSUE / SUGGESTION STATUS

Issue A: Relay URL Filter Does Not Remove Duplicates Resolved

Issue B: RelayClient Does Not Timeout Relay Request Resolved

Issue C: Malicious Paymaster Resolved

Issue D: Relay Server Griefing (Known Issue) Resolved

Issue E: Relay Penalizer Incentive Misalignment Resolved

Issue F: Attacker May Request Block Gas Limit Worth of Gas Resolved

Issue G: RelayHub Makes Unguarded Call to Untrusted Contract Resolved

Suggestion 1: Improve Documentation Partially Resolved

Suggestion 2: Consider Implementing an Approve / Confirm Owner Transfer Resolved

Suggestion 3: Complete Paymaster Gas Calculation Partially Resolved

https://github.com/LeastAuthority/gsn/blob/3bc59af87bed764cedb828dedbb3a18188b21b0a/src/relayclient/RelaySelectionManager.ts#L97
https://github.com/LeastAuthority/gsn/blob/3bc59af87bed764cedb828dedbb3a18188b21b0a/src/relayclient/RelaySelectionManager.ts#L97

Synopsis

When a relay client attempts to select the next relay, it filters through a list of given relays. This filter
should remove duplicates, as stated in the comments for the RelaySelectionManager. However, the
code performing the filtering does not remove duplicates.

Impact

Minor. The comments state that the filtering should occur and that the relays URLs are used as keys in
maps. As a result, these duplicates may cause data to be overwritten elsewhere in the client.

Preconditions

Duplicates would have to be returned from the transaction details that are passed into the
RelaySelectionManager.

Technical Details

The array `slice` is acted on by the `filter` method, however, the return value of the operation is
never assigned to anything and never returned as a result.

Remediation

The value returned from the `.filter()` method performed on `slice` should be assigned to a new
value and that value should be returned. An example of the problem and the fix is available. Additionally,
we recommend adding a regression test for this case.

Status

The GSN team has responded that while the code does not rely on the filter, the filter has been removed.

Verification

Resolved.

Issue B: RelayClient Does Not Timeout Relay Request

Location

https://github.com/LeastAuthority/gsn/blob/master/src/relayclient/HttpWrapper.ts#L10-L12

Synopsis

After a client finds a relay server that responds to a ping successfully, it does not expect the next request
to timeout.

Impact

A malicious relay server can stall any client that makes a request to it by responding to the ping quickly
but stalling on the relay request.

Preconditions

The client has not specifically configured a timeout.

Technical Details

GSN uses the Axios library to perform http requests, which defaults to not using timeouts on requests.
The RelayClient does not configure a timeout and requests are made without a timeout as a result.

The Axios library is initialized with a configuration object, which does not have a timeout property by
default. The timeout property can also be passed as the third argument to any call, which it currently is

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 7
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://jsbin.com/rilusatela/edit?js,console,output
https://github.com/opengsn/gsn/pull/497
https://github.com/LeastAuthority/gsn/blob/master/src/relayclient/HttpWrapper.ts#L10-L12

not. The Axios library is also wrapped by HttpWrapper, which is then wrapped by HttpClient.
HttpClient is created by GSNConfigurator in getDependencies, which is called by RelayClient.

Before selecting a RelayServer to use, the RelayClient pings several RelayServers. The ping
request is also made without a timeout property. However, since multiple pings are made in parallel, it will
work as long as at least one RelayServer does not stall.

Remediation

Make timeout part of the default http configuration.

Status

A 15-second default timeout setting has been implemented for the HttpClient.

Verification

Resolved.

Issue C: Malicious Paymaster

Location

https://github.com/LeastAuthority/gsn/blob/3bc59af87bed764cedb828dedbb3a18188b21b0a/src/relay
server/RelayServer.ts

Synopsis

This issue is related to the gas depletion attacks described by the GSN team.

A carefully designed Paymaster appears to accept a relay when run as a view function, however, it rejects
the transaction on-chain. This causes the RelayServer to pay for all gas up to the acceptance budget.

Impact

An attacker could drain the relay servers of their budget by making many requests to the malicious
Paymaster. There is no way to disable supporting a particular Paymaster in the current RelayServer
code, as a result, all RelayServers are vulnerable.

Preconditions

The attacker would need a malicious Paymaster contract and the ability to request to relay servers.

Feasibility

This attack would be straightforward with a suitable Paymaster contract.

Technical Details

The attacker first deploys a contract that will accept a relay request when it is run off-chain, but rejects it
when it is run on-chain. When making a request, the relay server will first run the Paymaster's accept
function off-chain and if it rejects the transaction, it will not submit it to the blockchain. If the Paymaster
accepts it off-chain, but rejects it on-chain, the relay server is left to pay the gas for that transaction.

A contract that runs one way off-chain and another way on-chain can be created by exploiting the default
ordering of transactions within a block. Both Parity and Geth sort transactions within a block by gas price,
with the highest first and without reordering transactions from a single address.

A contract is made that has two modes, accept and reject. The mode can only be switched by the
malicious contract owner. First, the mode is set as accept, then many requests with lower gas prices are

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 8
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/opengsn/gsn/pull/497
https://github.com/LeastAuthority/gsn/blob/3bc59af87bed764cedb828dedbb3a18188b21b0a/src/relayserver/RelayServer.ts
https://github.com/LeastAuthority/gsn/blob/3bc59af87bed764cedb828dedbb3a18188b21b0a/src/relayserver/RelayServer.ts
https://www.notion.so/GSN-v2-security-model-4115f7e4d067413d9d18a0a3f6086c1a
https://ethereum.stackexchange.com/questions/6107/what-is-the-default-ordering-of-transactions-during-mining

made to many RelayServers. The malicious Paymaster owner intends for these transactions to take
several minutes to be confirmed. The malicious Paymaster then quickly sends a transaction to switch the
Paymaster mode to reject. The mode switch transaction is sent with a much higher gas price so that even
if it is mined in the same block as one of the relay requests, it will be sorted to the start of the block and
thus mined before the relayed transaction. As a result, the relayed transaction is run in reject mode. The
attacker waits until all pending transactions are confirmed and then switches back to accept mode for the
next round of attack.

To have maximum impact, when run in accept mode the contract would use very little gas, but in reject
mode it should loop until all available gas has been used up.

Mitigation

At present, there is no way for a relay server operator to disable support for a particular Paymaster.
However, because relay servers are just servers and not contracts, a change could be deployed rapidly.
We recommend that the ability to disable particular Paymasters be added. An even safer alternative
would be to explicitly enable Paymasters and then audit the Paymasters first.

Remediation

A possible approach would be to limit the on-chain function to run with exactly the gas used by the
off-chain run. However, this creates an easy way for the malicious Paymaster to detect if it is running
on-chain or not, reducing the impact of the attack, but also making it easier to execute. It is not possible
to have Ethereum lie to the contract about the gas remaining, but it would be possible to statically analyze
the contract and detect that it does not access gas remaining. If not, then it cannot be using this attack.
This option would also have the downside of likely reverting when run on contracts that did not have
exactly the same gas used, a condition that might be triggered by the state of the contract changing due
to other calls to the same contract being run and mined in between the time of the off-chain run and the
on-chain run.

It has also been suggested during discussions with the GSN team to have a reputation mechanism where
relays would automatically block Paymasters that reject on-chain. This will likely introduce new edge
cases and could possibly be attacked by calling the Paymaster without running the check off-chain first.

We do not recommend interacting with arbitrary contracts without the ability to disable specific instances
and the GSN community should be encouraged to audit Paymaster contracts.

Status

The relay client will still relay transactions to arbitrary Paymasters, but will track the number of reverts,
and will throttle requests to a Paymaster if it reverts a certain number of times within a window. If it
continues to error, it will eventually be permanently blocked. While this approach does not prevent
malicious paymasters, it does limit their impact on a particular relay server. It is worth noting, however,
that each relay server keeps track of the failed requests locally, so the impact of the attack is on every
relay server. As a result, an attack would have greater impact if there are many relay servers in the
network. Once a malicious Paymaster is blocked by a relay, the attacker would need to deploy another
Paymaster contract, thus making the attack more expensive. It seems likely that this implemented
mitigation is sufficient enough to discourage the attack in practice due to the increased cost.

We recommend taking an additional step to provide the ability to manually allow or disallow particular
Paymasters. If a currently unknown attack is discovered, its impact will be greater without a pre-existing
ability to disable the specific interaction that enables it.

Verification

Resolved.

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 9
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Issue D: Relay Server Griefing (Known Issue)

Location

https://github.com/LeastAuthority/gsn/blob/master/contracts/Penalizer.sol

Synopsis

The client submits the same relayed transaction to many relay servers, which runs successfully off-chain,
but will likely only run successfully on the first relayed transaction in order to get mined. Other relay
servers who submit it will be left paying the gas of the failed transaction.

Impact

This will result in increased cost of running a relay server and it could potentially be an attack on the relay
network.

Preconditions

A contract supporting GSN that is likely to run a transaction once, but not twice.

Feasibility

This attack is straightforward and also has the potential to take place accidentally.

Technical Details

The relay server receives a signed transaction from a client and then checks if it is valid by a number of
checks, including running the transaction off-chain. If it is accepted, it then submits it to the blockchain.
However, if the same transaction has been submitted to multiple relay servers, they will each pass the
off-chain check, but the first on-chain transaction will likely change the state of the contract so that the
second and subsequent runs revert. This will leave the other relay servers to pay for gas on the failed
transaction.

Mitigation

The GSN team explained that they intend to handle this case by relay servers detecting reverting
transactions and introducing a random delay, similar to the random delays used to prevent collisions in
network protocols. During the delay, the relay server would have time to check for pending transactions of
the same call, and if a duplicate is detected, it would reject the transaction. This should greatly reduce the
cost to relays without stopping it entirely.

Alternatively, there are cases where a client may need to legitimately re-request that a transaction be run
by another client. For example, this may occur if their transaction stalls because a relay server goes
offline after submitting a transaction with insufficient gas and does not increase the gas price again. To
avoid any relay refusing to rerun their transaction, the client could alter subtle aspects of the transaction
so that it does not hash the same (such as fractional token amounts). However, this would also have the
effect of breaking the mitigation.

Another potential approach, which could be used as well as the above, would be to temporarily increase
the relay fee to cover costs.

Remediation

A possible near-full remediation would be to develop a way to run a view function that takes into account
possible state change for all pending transactions. It would take into account both the current confirmed
state of the chain and different possible selections of pending transactions. To our knowledge, this does
not yet exist. While it would be a valuable service to the Ethereum community, it would require a
significant development effort. In addition, it still would not guarantee that when a relay sends a

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 10
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/gsn/blob/master/contracts/Penalizer.sol

transaction that it will not collide with another one, including one that may not yet have been sent. This is
an unfortunate artifact due to the design of Ethereum.

Status

The suggested mitigation has been implemented and a delay will be triggered if the attack is attempted
once. Additionally, the GSN team has implemented the ability for a relay server to temporarily increase
fees to cover costs.

The GSN team has also responded that the cost of an attack is non-zero, thus reducing the
cost-effectiveness of an attack and thus discouraging the attack due to the increased cost.

Although the GSN team has taken the recommended steps to mitigate this issue and it is resolved per
this report, there are remaining concerns given the complexity around this issue. As a result, we believe it
should be closely monitored to ensure the implemented remediation tactics are effective. Specifically, we
suggest a further attack analysis on the cost of the fee as compared to the opportunity cost griefed on
the relayers, and how these costs translate over time with fluctuating value of the fee / gas prices.

Verification

Resolved.

Issue E: Relay Penalizer Incentive Misalignment

Location

https://github.com/LeastAuthority/gsn/blob/master/contracts/Penalizer.so

Synopsis

This issue raises the question of who is watching the relayers. The penalizer provides a mechanism to
discourage a Denial of Service (DoS) attack, however, the incentives and protocol for submitting fraud
proofs to the penalizer contract are not clear.

Impact

If undetected or unreported, relayers may abuse users by denying their transactions from updating the
application state.

Preconditions

Those watching for invalid transactions must be rationally deciding that they will not receive a reward and
must stop watching for invalid relayer transactions that may be attacking a user. This may require client
software and protocol changes that would undo functionality provided by default to aid in the search for
invalid transactions.

Feasibility

Given that there is a challenge in the penalizer contract with stake on the line to discourage this behavior,
this is unlikely to happen and would require the relayers infraction going unnoticed. As a result, one must
assume that going unnoticed is a possibility.

Technical Details

The relayers may DoS users by broadcasting a double nonce such that any further transactions are not
able to make their way into the application. A further description of the attack can be found in the GSN
Replay DDoS Attack and Mitigation document provided to us by the GSN team. In general, a relayer may
broadcast an incorrectly formatted transaction in the fields of gas limit and bad method signature. It is
less clear when this infraction would be beneficial for an attacker and we suggest creating

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 11
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/opengsn/gsn/pull/460
https://github.com/opengsn/gsn/commit/61369b886eeb2cdfa63aeb8501416ab3abb38768
https://github.com/LeastAuthority/gsn/blob/master/contracts/Penalizer.sol
https://www.notion.so/GSN-Replay-DDoS-attack-and-mitigation-a99ffea3cb8e49c986d76124882072d6
https://www.notion.so/GSN-Replay-DDoS-attack-and-mitigation-a99ffea3cb8e49c986d76124882072d6

documentation (Suggestion 1) providing the reasoning for mitigating these transaction faults with severe
penalty. The penalty for a relayer committing either of these infractions is removal from the hub and total
loss of stake. Given that this is a severe punishment, it is reasonable to assume that the events will
happen infrequently or with extremely low probability. Furthermore, given the low probability of success,
we theorize that rational actors in the GSN will choose not to scan for invalid transactions as a result.

There is an initial incentive for any user that is denied service to punish a relayer. However, it is not clear
who will know about the infraction or if the user will be able to reach the network to punish the relayer.

Mitigation

This calls to question systems like watch towers or pieces of software with the sole purpose of scanning
for infractions. This is a complicated area of research and it is yet unclear to our team which watch tower
system is best for all systems. The GSN team has plans for some type of watch tower in the form of a
penalizer process possibly running on cloud infrastructure for high up time, and plans to initially
implement full node relayers with scanning code to altruistically scan the transaction mempool. We
encourage the GSN team to monitor developments in this area of research.

Status

The GSN team has implemented a new feature that has relay clients doubling as transaction verifiers per
the suggested mitigation. The GSN team has also responded that the relayers are incentivised to report
infractions given that there is stake to claim if one is found.

Although these mitigations sufficiently address the stated issue, we encourage the GSN team to continue
researching this incentive. If an infraction is not likely to happen frequently, and most nodes are found to
have turned off the code that altruistically searches for infractions, there could be no real incentive for any
node to report issues under a rational assumption that it costs more to look for infractions without a high
likelihood of reward.

Verification

Resolved.

Issue F: Attacker May Request Block Gas Limit Worth of Gas

Location

https://github.com/opengsn/gsn/blob/master/contracts/BasePaymaster.sol#L36

Synopsis

This issue amplifies the attack we describe in Issue C with malicious Paymaster contracts. Neither the
relay server nor RelayHub enforce a maximum gas limit against a Paymaster, but will relay transactions
as long as the Paymaster has sufficient balance to cover. As a result, the Paymaster controls the
exposure of the relays. In general, the initiators of relay requests control the maximum amount of Ether a
relayer will burn in a single transaction up to the block gas limit.

Impact

Combined with a malicious Paymaster (Issue C), the balance of a relay (or all relays) can be rapidly
burned.

Preconditions

The attacker would need a malicious Paymaster contract and enough balance to appear able to cover the
max cost.

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 12
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/opengsn/gsn/pull/520
https://github.com/opengsn/gsn/blob/master/contracts/BasePaymaster.sol#L36

Feasibility

This attack would be straightforward (see Issue C).

Technical Details

The BasePaymaster defines a maximum acceptance budget as a static public variable
PAYMASTER_ACCEPTANCE_BUDGET, but this is only checked at compile time. As a result, a different
Paymaster contract can be used as long as it follows the same interface. The RelayHub checks that the
Paymaster has enough balance to cover the transaction, however, it does not check that it is within a
reasonable limit. For each request made to a relay server, it will calculate a constant maxPossibleGas
used to determine how much gas the relayer needs to provide in order to ensure that the transaction is
successful. The client sends a gasLimit to the relay server to cover the execution costs of the forwarder
transaction and the relay server will contact the Paymaster contract to add enough gas based on the
value of the acceptance budget. The relay server may be attacked and use the maximum available gas in
an Ethereum block during the attack.

Remediation

The RelayServer needs a maximum gas limit that it is willing to relay or specifically reject relay
requests to Paymasters that return a PAYMASTER_ACCEPTANCE_BUDGET that is too high for the
exposure tolerance of the relay.

Status

During the time in which our team audited an earlier version of the code, the GSN team merged a pull
request that limits the RelayServer's exposure to a malicious Paymaster. As a result, a maximum
acceptance budget is passed to the RelayHub. The RelayHub can still be griefed by a malicious
Paymaster but the exposure is limited. However, the fix was vulnerable to Issue G, but that has now been
also resolved.

Verification

Resolved.

Issue G: RelayHub Makes Unguarded Call to Untrusted Contract

Location

https://github.com/LeastAuthority/gsn/blob/3bc59af87bed764cedb828dedbb3a18188b21b0a/contracts
/RelayHub.sol#L125

Synopsis

This issue is another vector for the attack described in both Issue C and Issue F with malicious Paymaster
contracts. In this instance, the Paymaster burns gas inside the getGasLimits method, which is called
prior to the RelayHub checking any gas limits

Impact

Combined with a malicious Paymaster (Issue C), the balance of a relay (or all relays) can be rapidly
burned.

Preconditions

The attacker would need a malicious Paymaster contract and enough balance to appear capable of
covering the max cost.

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 13
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/opengsn/gsn/blob/c9087c7e473e5c461da466c29016474192831da0/contracts/RelayHub.sol#L128
https://github.com/opengsn/gsn/blob/c9087c7e473e5c461da466c29016474192831da0/contracts/RelayHub.sol#L128
https://github.com/LeastAuthority/gsn/blob/3bc59af87bed764cedb828dedbb3a18188b21b0a/contracts/RelayHub.sol#L125
https://github.com/LeastAuthority/gsn/blob/3bc59af87bed764cedb828dedbb3a18188b21b0a/contracts/RelayHub.sol#L125

Feasibility

Straightforward, see Issue C.

Technical Details

The attack works in a similar way to the attack in Issue C, with the exception that the gas is burned in
Paymaster.getGasLimits instead of in Paymaster.preRelayedCall. It’s worth noting that this
call is made before vars.gasBeforeInner is set and, as a result, the Paymaster is never charged for
the cost of getGasLimits. Thus, an on-chain loop and revert inside getGasLimits will always cost the
relay server.

The IPaymaster method getGasLimits is defined as a view function, this means it can read but not
write memory. This code calling this is compiled to a CALLSTATIC evm opcode, which will cause a revert
if the method tries to write to memory - but it can still read memory, so it can check a mode variable and
behave differently.

Remediation

Instead of calling the Paymaster contract to get the gas limits, require that the Paymaster pre-register its
gasLimits with the RelayHub. While this adds one more step to deploying a Paymaster, it will also
mean that the GasLimits cannot change unexpectedly.

It is worth noting that Solidity also has a "pure" directive, which forbids the method from reading memory.
This would appear to fix this issue. However, while Solidity would produce a compilation error if a function
declared as pure attempts to read memory, CALLSTATIC does not enforce this. As a result, calling an
unknown Paymaster must be a view, as opposed to a pure function.

Status

The suggested remediation has been implemented and getGasLimits is now called with a gas
allowance. This significantly reduces the impact that this attack could have and it is no longer considered
a serious security vulnerability.

Verification

Resolved.

Suggestions

Suggestion 1: Improve Documentation

Location

https://docs.opengsn.org/learn/index.html

Synopsis

The interface contracts are well commented in some files, however, coverage is not comprehensive. For
example, the Paymaster interface is well commented while the Penalizer interface has no comments
present. In addition, a few files have limited descriptions of functionality, design rational, and attack
mitigation strategy.

Protocol documentation is provided, however, it does not include the discussion of possible attacks to the
GSN network provided in the internal documentation provided to us by the GSN team. While these
possible attacks do have some form of mitigation present in the code at this stage, including these issues

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 14
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/opengsn/gsn/pull/497
https://docs.opengsn.org/learn/index.html
https://docs.opengsn.org/learn/index.html

in the main project documentation will help increase knowledge of known issues and the rationale behind
the decisions made in the protocol design.

Furthermore, documentation defining the expected use cases would be a helpful guide, given that the
GSN codebase largely comprises a framework for handling meta transactions.

Mitigation

Include thorough comments for the Solidity contracts describing in detail the intended functionality and
expected behavior.

Expand the protocol documentation to include all of documents and comment notes on attack vectors, in
addition to currently implemented and possible future implementations of mitigations for various
potential attacks.

Finally, we recommend creating documentation that describes the expected use cases and how the
system handles requests from beginning to end.

Status

The GSN team has documented the protocol, which has been added to a repository within the GitHub
organization. The GSN team has also responded that they have made improvements to the existing
developer documentation, which is a continuous, ongoing effort.

Although we also recommend that the GSN team include comprehensive coverage of comments in the
code base, the GSN team has said they do not intend to do so and their position is that documentation of
code should remain outside of the code.

Verification

Partially Resolved.

Suggestion 2: Consider Implementing an Approve / Confirm Owner
Transfer

Location

Any contract inheriting OpenZepplin Ownable contract.

Synopsis

Ownable.sol contracts have been a standard in Ethereum, however, there is a minor flaw in their design.
The transfer of ownership is vulnerable to accidental updates to mistaken accounts. If any mistaken
address is supplied to the update function, it only requires a single transaction to permanently lose
ownership of any system inheriting that ownership.

Mitigation

Consider taking a different approach to ownership update by creating two functions for updating
ownership. An approve function will stage an address in the contract that is intended to become the next
owner. If this address is valid then the key (or keys for multisig) holder(s) will then be able to call an
accept function that will permanently update the ownership to the new address.

This increases the complexity, however, given how infrequent ownership updating is and how important it
is to do so correctly, the cost is justified. This also removes the ability to “burn” ownership since one can
not create an accept transaction from an uncontrollable account. It is not good practice to use a bug as

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 15
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/opengsn/gsn-protocol
http://docs.opengsn.org/

a feature and that a separate functionality should be created to explicitly burn ownership of a system if
this is desired.

Status

The GSN team has responded that they do not intend to mandate how ownership of the Paymaster
contracts is implemented. The implementation of ownership mechanisms will be at the discretion of
individual organizations that will deploy them as they are outside of the core GSN contracts.

Verification

Resolved.

Suggestion 3: Complete Paymaster Gas Calculation

Location

https://github.com/LeastAuthority/gsn-paymasters/blob/master/contracts/ProxyDeployingPaymaster.so
l#L64

Synopsis

A constant declaration PRE_RELAYED_CALL_GAS_LIMIT_OVERRIDE for a gas limit is accompanied by
a comment with a TODO that the constant should be calculated. This constant appears to increase the
gas limit that a Paymaster is expected to need in order to verify transactions from relayers. The value is
set to two million gas which is overriding the 210,000 gas that a standard Paymaster uses as a default
setting. This increase will expose the relayer to potentially more risk (related to Issue C) and should be
considered thoroughly when suggested as a limit.

Mitigation

Provide calculations and rationale for the increased computation, which results in more risk exposure for
relayers.

Status

The GSN team has responded that the ProxyDeployingPaymaster instance is a special case, which is
meant to be trusted and that the security implications of raising the gas limit have been considered in this
specific instance. In addition, the GSN team has responded that they are working on a new version, which
will use EIP-1167 static proxies, which will no longer require a higher gas limit. However, it remains
partially unresolved at the time of this verification.

Verification

Partially Resolved.

Recommendations
We recommend that the Suggestions stated above are reconsidered and, if addressed, followed up with
verification by the auditing team.

Also, we recommend that the GSN team incorporate the informal documentation and notes provided to
our team on potential attack vectors and possible mitigations into the formal protocol documentation.
This will increase public awareness of both known vulnerabilities and potential attacks, in addition to
suggested mitigation strategies, along with further clarifying the rationale behind the design decisions
made by the GSN Team.

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 16
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/gsn-paymasters/blob/master/contracts/ProxyDeployingPaymaster.sol#L64
https://github.com/LeastAuthority/gsn-paymasters/blob/master/contracts/ProxyDeployingPaymaster.sol#L64
https://github.com/LeastAuthority/gsn-paymasters/blob/a7a28e93bac235fde3c177df3b4e5753a7004afb/contracts/ProxyDeployingPaymaster.sol#L64

Despite the commendable efforts of the GSN team in mitigating the various risks raised in this report, two
of the issues present significant challenges that require further diligence. For Issue D, we suggest a
further relay girefing attack analysis on the cost of the fee as compared to the opportunity cost griefed on
the relayers, and how these costs translate over time with fluctuating value of the fee / gas prices. For
Issue E, we encourage the GSN team to continue researching the incentive for relay penalization. If an
infraction is not likely to happen frequently, and most nodes are found to have turned off the code that
altruistically searches for infractions, there could be no real incentive for any node to report issues under
a rational assumption that it costs more to look for infractions without a high likelihood of reward.

Finally, we commend the GSN team for being thorough and rigorous in their approach to security
throughout the project. It is clear that considerable time and effort has been applied towards designing
and implementing a system which places a strong emphasis on security.

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 17
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 18
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | GSN, Paymaster Contracts, + Forwarder Contract | Ethereum Foundation 19
27 December 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

