
OpenGSN Smart Contracts Review
By ChainSafe Systems

January 2021 March 2021

OpenGSN Smart Contracts Review
Auditor: Oleksii Matiiasevych

Warranty

This Code Review is provided on an “as is” basis, without warranty of any kind,
express or implied. It is not intended to provide legal advice, and any information,
assessments, summaries, or recommendations are provided only for convenience
(each, and collectively a “recommendation”). Recommendations are not intended to be
comprehensive or applicable in all situations. ChainSafe Systems does not guarantee
that the Code Review will identify all instances of security vulnerabilities or other related
issues.

Executive Summary
There were 3 critical, 5 major, 1 minor, 32 informational/optimizational issues identified in
this version of the contracts. There are no known compiler bugs, for the specified compiler
version (0.6.10), that might affect the contracts’ logic. Operation of the GSN protocol,
especially in regards to being profitable for the relayers, depends on the effectiveness of the
GSN nodes implementation, which was not reviewed during the course of this engagement.
I enjoyed reading the code and all the parts were understood with ease. The exception was
the gas economy part which in my opinion could use more commentary.

Update Verification Summary
There were 0 critical, 0 major, 0 minor, 9 informational/optimizational issues identified in
the updated version of the contracts. There are no known compiler bugs, for the specified
compiler version (0.7.6), that might affect the contracts’ logic. All the significant issues were
addressed in this update, and 0 new issues were found.

1. Introduction
OpenGSN requested ChainSafe Systems to perform a review of the Gas Stations Network
Protocol v2 contracts implementation by OpenGSN. The contracts in question can be
identified by the following git commit hash:

9856bdd7b55a779452fa7f30eebe39ef36a7b411 v2.0.1

There are 21 contracts/libraries/interfaces in scope.

After the initial review, OpenGSN team applied a number of updates which can be identified
by the following git commit hash:

331166d9fcb5e01fd4dcf52e827123b7d3751972 release

Additional verification was performed after that, results of which are included in the
Appendix A.

2. Disclaimer
The review makes no statements or warranties about utility of the code, safety of the code,
suitability of the business model, regulatory regime for the business model, or any other
statements about fitness of the contracts for any specific purpose, or their bug free status.
The review documentation below is for internal management discussion purposes only and
should not be used or relied upon by external parties without the express written consent of
ChainSafe Systems.

3. Executive Summary
There were 3 critical, 5 major, 1 minor, 32 informational/optimizational issues identified in
this version of the contracts. There are no known compiler bugs, for the specified compiler
version (0.6.10), that might affect the contracts’ logic. Operation of the GSN protocol,
especially in regards to being profitable for the relayers, depends on the effectiveness of the
GSN nodes implementation, which was not reviewed during the course of this engagement.
I enjoyed reading the code and all the parts were understood with ease. The exception was
the gas economy part which in my opinion could use more commentary.

5. Invariants Analysis With Fuzzing
Over the course of this review, a list of contract state invariants were constructed and tested
with Echidna: A Fast Smart Contract Fuzzer

5.1. BasePaymaster. relayHub could only be changed by the owner.

5.2. BasePaymaster. trustedForwarder could only be changed by the owner.

5.3. BasePaymaster. Withdrawal could only be initiated by the owner.

5.4. BaseRelayRecipient. msgSender could only be modified if called by the
trustedForwarder.

5.5. BaseRelayRecipient. msgData could only be modified if called by the
trustedForwarder.

5.6. BaseRelayRecipient. trustedForwarder could not be modified.

5.7. Forwarder. typeHashes could not become false once being true.

5.8. Forwarder. domains could not become false once being true.

5.9. Forwarder. nonces could not decrease.

5.10. Forwarder. nonces could only be increased with a valid signature.

5.11. RelayHub. minimumStake could not be modified.

5.12. RelayHub. minimumUnstakeDelay could not be modified.

5.13. RelayHub. maximumRecipientDeposit could not be modified.

4. Critical Bugs and Vulnerabilities.
Three critical issues were identified during the course of review. Detailed explanations are
provided in the Line By Line Review section. The short summary:

4.1. Using _msgData() inside of the GSN context abruptly ends contract execution.

4.2. Each RelayHub paymaster’s entire balance could be drained immediately.

4.3 StakeManager stakers could be frontrun during their initial stake, which would result
in their entire stake being drained.

6. Line By Line Review

5.13. RelayHub. maximumRecipientDeposit could not be modified.

5.14. RelayHub. gasOverhead could not be modified.

5.15. RelayHub. postOverhead could not be modified.

5.16. RelayHub. gasReserve could not be modified.

5.17. RelayHub. maxWorkerCount could not be modified.

5.18. RelayHub. stakeManager could not be modified.

5.19. RelayHub. penalizer could not be modified.

5.20. RelayHub. workerToManager could not be cleared once assigned.

5.21. RelayHub. workerCount could not increase above the maxWorkerCount.

5.22. RelayHub. penalize could only be called by penalizer.

5.23. RelayHub. Paymaster’s balance could not be decreased without the legitimate relay
request. Does not hold in current version.

5.24. StakeManager. Relay manager and its owner cannot have the same address.

5.25. StakeManager. Sum of the stakes is always less than or equal to the StakeManager
contract’s balance.

5.26. StakeManager. Stake could not be decreased without a call from RelayHub or the
stake owner.

5.27. StakeManager. unstakeDelay could not be decreased without a withdrawal.

6.1. Forwarder, line 40. Note, suffixData is always used as part of a hash preimage and
never used in plain. Consider modifying the interface so that suffixData is accepted in a
hash form.

6.2. Forwarder, line 63. MAJOR, the attacker could DoS executions by front running
execute calls with not enough gas. Attack scenario:

• User signs a request with gas set to 1M.
• Relayer sends a request in transaction with a gas limit set to 1M.
• Attacker sends a transaction Forwarder.execute(same request) with a

gas limit set to 50k and a gas price higher than Relayer.
• Attacker’s transaction is mined first, call to the target contract goes Out Of

Gas, while the user nonce in the forwarder gets updated.
• Relayer transaction fails too without being paid.

The most important thing here is that the user action will be cancelled. In this way, the
attacker can practically stop the execution of any transaction through the forwarder as long
as they have a budget for it. It is not critical though, as it can only delay the user action. A
user can always send the transaction directly to the target, without using the forwarder at all.

One way to fix this problem is to validate available gas with require(gasleft() >=
req.gas);

6.3. Forwarder, line 66. Note, there might not be enough gas left for value transfer,
assuming that the attacker increased the forwarder balance after the relay transaction was
already broadcasted. Relayers should supply enough extra gas for this situation.

6.4. Forwarder, line 73. Note, if the forwarder contract is deployed deterministically across
different blockchains (having the same address) which use the same chainId then relay
signatures could be replayed on them.

6.5. Forwarder, line 82. Note, partial validation doesn’t guarantee valid request type will be
produced. Consider removing it in order to optimize gas usage.

6.6. IForwarder, line 23. Note, outdated comment. Revert will also happen in case of an
unknown domain separator or an unknown request type hash.

6.7. IForwarder, line 60. Note, outdated comment. A typeSuffix must not be empty. It
should always have at least 1 additional parameter and must end with a ‘)’.

6.8. GsnTypes, line 8. Note, gasPrice must be validated inside of the paymaster’s
preRelayedCall in order not to overpay.

6.9. GsnTypes, line 9. Note, pctRelayFee must be validated inside of the paymaster’s
preRelayedCall in order not to overpay.

6.10. GsnTypes, line 10. Note, baseRelayFee must be validated inside of the paymaster’s
preRelayedCall in order not to overpay.

6.11. IKnowForwarderAddress, line 4. Note, this interface is only used for testing purposes.
Consider removing it.

6.12. IRelayHub, line 10. Note, throughout the file, style mismatch is noticed as double
slash vs triple slash comments.

6.13. IRelayHub, line 134. Note, paymasterMaxAcceptanceBudget is missing in the
comments section documenting this function.

6.14. IRelayRecipient, line 32. Note, the comments section ends abruptly with an unfinished
explanation.

6.15. IStakeManager, line 55. Optimization, the unstakeDelay and withdrawBlock can
be packed into the same slot as the owner in order to optimize gas usage.

6.16. GsnEip712Library, line 146. Note, the order of fields is different from the RelayData.
The forwarder is located at the end of the struct, while it is not at the end in the preimage.

6.17. GsnEip712Library, line 151. Note, excessive blank lines.

6.18. MinLibBytes, line 22. Note, the function readAddress is not used. Consider
removing it as obsolete.

6.19. BasePaymaster, line 98. Note, Ethereum users are famous for sending ERC20 tokens
to any address they see. Consider adding a function to withdraw such tokens from the
paymaster, in case they end up locked.

6.20. BaseRelayRecipient, line 29. MAJOR, _msgSender will fail to recognize a relayed
call in case of original data being empty or shorter than 4 bytes (such that could be used in
a fallback function). This will restrict some contracts from integrating GSN seamlessly. This
limitation could be lifted by changing the condition to msg.data.length >= 20.

6.21. BaseRelayRecipient, line 50. MAJOR, _msgData will fail to recognize a relayed call
in case of original data being empty or shorter than 4 bytes (such that could be used in a
fallback function). This will restrict some contracts from integrating GSN seamlessly. This
limitation could be lifted by changing the condition to msg.data.length >= 20.

6.22. BaseRelayRecipient, line 61. CRITICAL, the contract execution ends here.

• Any function that will make use of _msgData in GSN context will be abruptly
ended, because assembly’s return expression works differently from Solidity’s
return statement.

• Bytes encoding in memory is incorrect for the internal context. Currently
the final layout is <offset> <length> <bytes> while the correct layout is just
<length> <bytes>.

• The free memory pointer located at 0x40 must be updated at the end of the
assembly block, otherwise memory corruption might occur in the code that called
_msgData.

6.23. BatchForwarder, line 28. Note, outdated comment.

6.24. Penalizer, line 56. Optimization, abi.encodePacked is excessive here, because it’s
only argument already has a bytes type.

6.25. Penalizer, line 57. Optimization, abi.encodePacked is excessive here, because it’s
only argument already has a bytes type.

6.26. Penalizer, line 99. Optimization, abi.encodePacked is excessive here, because it’s
only argument already has a bytes type.

6.27. RelayHub, line 26. Optimization, many variables from this batch could be packed
together to take less storage space and make future reads cheaper.

6.28. RelayHub, line 79. Optimization, workerCount[relayManager] read thrice in this
function. Consider putting it into a local variable to optimize gas usage.

6.29. RelayHub, line 111. Optimization, balances[account] read twice in this function.
Consider putting it into a local variable to optimize gas usage.

6.30 RelayHub, line 179. MAJOR, MinLibBytes.readBytes4 will fail in case of request
data being empty or shorter than 4 bytes (such that could be used in a fallback function).
This will restrict some contracts from integrating GSN seamlessly.

6.31. RelayHub, line 240. Note, subtraction could cause an underflow here, though it
is safe because it will revert further down in calculateCharge and the worker can be
subsequently penalized.

6.32 RelayHub, line 244. Optimization, workerToManager[msg.sender] is read six
times in this function. Consider putting it into a local variable or memory to optimize gas
usage.

6.33. RelayHub, line 220. CRITICAL, vars.innerGasUsed can be manipulated by
the relayer in various ways to bypass acceptanceBudget condition and drain any
paymaster’s balance in a single transaction. Manipulation is achieved by setting one of the
following relayCall parameters to waste data of various length:

• signature
• approvalData
• relayRequest.relayData.paymasterData
• relayRequest.request.data

Relayer will then set the relayData.baseRelayFee to the current balance of the paymaster,
relayData.gasPrice to zero, and relayData.paymaster to the paymaster’s address.
Other parameters don’t have much relevance in this case. The relayed call will fail, but
acceptanceBudget will be reached, so paymaster will end up paying the whole balance to
the relayer.

6.34. RelayHub, line 323. MAJOR, reverting anywhere inside of the relayed call results in
a forwarder signature of the sender being left unused and publicly available for prolonged
periods of time. This signature could be used by an attacker if the user stops using the
protocol and does not make sure to execute or invalidate it. Consider the following attack
scenario:

• User signs a call to transfer 1000 GSN enabled ERC20 tokens to address X,
while having only 50 on balance.

• Call fails (and the nonce left unused in the forwarder).
• User stops using the GSN and proceeds with using his wallet directly.
• Years pass and eventually the user has 1000+ of the same tokens on his

balance.
• Attacker sends a transaction to the forwarder with request from step #1, forcing

the user to do the transfer of 1000 tokens.

This issue could be mitigated by introducing an expiration date for the requests.

6.35. RelayHub, line 389. Note, the stakeInfo is excessively pulled from the
StakeManager and then immediately passed back to it. Consider fetching stakeInfo
inside of the penalizeRelayManager call.

6.36. StakeManager, line 32. Minor, an attacker could disable the stakeForAddress
function for any relayManager by making its owner a relay manager for themselves.
They will need to call stakeForAddress(targetOwner, 0) and targetOwner will be
restricted from increasing their stake.

6.37 StakeManager, line 33. CRITICAL, a frontrunning attack could be executed to burn
half of the stake of the new relay manager and to steal the second half. The attack scenario:

• User A calls stakeForAddress{value: 1 ETH}(newManager,
newDelay)

• User B front runs A with a call to a malicious contract that does the following:
• stakeForAddress(newManager, 0);
• authorizeHubByOwner(newManager, Bob);
• unlockStake(newManager);
• withdrawStake(newManager);

• Now A’s transaction mines successfully, and the newManager authorized B to
be a relayHub

• B calls penalizeRelayManager(newManager, Bob, 1 ETH)
• B gets 0.5 ETH, A loses the whole stake.

6.38. StakeManager, line 35. Note, the unstakeDelay could be accidentally set to
unrealistically long periods of time resulting in a forever locked stake. Consider limiting this
parameter.

6.39. StakeManager, line 36. Optimization, there are 3 excessive storage reads here,
consider using local variables instead to optimize gas usage.

6.40. StakeManager, line 44. Optimization, info.withdrawBlock could be stored in the
local variable to optimize excessive reads.

6.41. StakeManager, line 133. Note, burning ether could be wasteful. Consider directing it
to some cause instead.

Oleksii Matiiasevych

Appendix A.

OpenGSN Smart Contracts Update Verification
Auditor: Oleksii Matiiasevych

There were 0 critical, 0 major, 0 minor, 9 informational/optimizational issues identified in
the updated version of the contracts. There are no known compiler bugs, for the specified
compiler version (0.7.6), that might affect the contracts’ logic. All the significant issues were
addressed in this update, and 0 new issues were found.

1. Executive Summary

2.1. Forwarder, line 40. Note, suffixData is always used as part of a hash preimage and
never used in plain. Consider modifying the interface so that suffixData is accepted in a
hash form.

2.2. IStakeManager, line 55. Optimization, the unstakeDelay and withdrawBlock can
be packed into the same slot as the owner in order to optimize gas usage.

2.3. MinLibBytes, line 22. Note, the function readAddress is not used. Consider removing
it as obsolete.

2.4. BasePaymaster, line 99. Note, Ethereum users are famous for sending ERC20 tokens
to any address they see. Consider adding a function to withdraw such tokens from the
paymaster, in case they end up locked.

2.5. RelayHub, line 121. Optimization, balances[account] read twice in this function.
Consider putting it into a local variable to optimize gas usage.

2.6. RelayHub, line 270. Note, subtraction could cause an underflow here, though it is
safe because it will revert further down in calculateCharge and the worker can be
subsequently penalized.

2.7. RelayHub, line 418. Note, the stakeInfo is excessively pulled from the
StakeManager and then immediately passed back to it. Consider fetching stakeInfo
inside of the penalizeRelayManager call.

2.8. StakeManager, line 43. Optimization, there are 3 excessive storage reads here,
consider using local variables instead to optimize gas usage.

2.9. StakeManager, line 140. Note, burning ether could be wasteful. Consider directing it to
some cause instead.

2. Remaining Insignificant Issues

